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PART A

GENERAL DISCUSSION

1. INTRODUCTION

This is the seventh quarterly progress report submitted in
accordance with the provisions of Contract No. 950670, "Investigation
of Optimization of Attitude Control Systems." It covers the period
January 1, 1966 through March 31, 1966. '

This report is in four parts. The first part summarizes thev
progress during the repofting‘period. The technical discussions are
given in Perts B, C, and D, in which the ﬁlans of future work are
elso included.

2. PROGRESS DURING REPORTING PERIOD

2-1 Coordination iicetings

A series of meetings was held at Purdue University on March 9

through Marchill, 1966. Those present at the meetings included:

A. E. Cherniack of Jet Propulsion Laboratory, Pasadena, California,

and J. Y. S. Luh, G. E. O'Connor and J. S. Shafran of Purdue University.
The discussions brought out the following:

(a) The entenna pointing problem should be treated as a steady
state problem or its equivalent.

(b) The optimel control of a particular space landing vehicle
should be'investigated with respect to the application of the control
theory of the bounded phase-coordinate systems. |

(c) The study of a hammonic oscillator with bounded asmplitude
and bounded rate control should not be sbandoned since the invéstigation

was almost completed st the meeting date.



-2

(d) JPL will initiate an amendment to Contract No. 950670 to
revise the STATRMENT OF WORK in accordance with the éurrent research
tasks, which were agreed upon by both JPL and Purdue.

(e), The research fund for the third year‘period is not
éuaranteed. The research, however, will be carried on until the free
balance of the account is exhausted. It is understood that the continuity
of the research effort will be interrupted should JPL decide to fund
the third yea} period at a later date.

2-2 Technical Progress

A preliminary ;tudy of the optimal control of a particular space
vehicle was completed. Based on the switching curve and the bpundary
of the controllable region, a closed-loop optimal controiler was
vsynthesized for the system in which the gyro inertia can be ignored end
the displacement of the vehicle 1s not specified. The control is of
a8 linear type if the gyro torque is saturated, and is of the "bang-
bang” type otherﬁise. The solution in detail, as well as the plan of
future work, is given in FPart B.

The investigation of a harmonic oscillator with bounded amplitude
and bounded rate was also completed. This study is a continuation of .
the previous work [3]. The result gives an insight into the form of
the extremal control functioﬁ for 2 system having a pair of purely
imaginary'characteristic roots. The problem is more complicated than
the unstable booster problem [3]. The control variable is found to
enter upon andAexit from- its bound as often as the time duration
permits, which is & natural result of the oscillatory behavior of the

system. Part C gives a complete presentation of the findings.
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The study of the antenna pointing problem is being continued.
The optimel control problem is reformulated in such.a manner that the
pointing direction is kept within an accepted regioh with maxinum
probebility a1l the time. Essentially, the optimel controller
minimizes the errof rate of transpission of information during the
entire flight journey of the space vehicle by enforcing the antenna
to point in a proper direction. Based on this criterion, the optimal
control problem is divided into two parts, viz., the determination of
the probability and the meximization (or minimization) of it. During
the reporting period, only the first part was studied. The technicel
discussion and the plan of future work are given in Part D.

3. PROFESSIONAL CONTRIBUTORS

Professional personnel contributing to the progress during the
reporting period are as follows:
J. Y. S. Luh, Principal Investigator
G. E. O'Connor, Staff Researcher

J. S. Shafran, Staff Researcher
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PART B

OPTIMAL CONTROL OF A PARTICULAR SPACE VEHICLE

1. INTRODUCTION

During the coordination meeting at Purdue on March 19, 1966, the
control problem of a particular space vehicle was discussed. The
block diagram for this particular system is shown in Figure 1. When
the system 1s operated in the linear regions of both saturation

elements, the over-all closed i00p transfer function is

6(s) _ 1 (1)
™s) 3¢ 4 [K,K,s + K K,] 6(s) |

vhere G(s) is the gyro transfer function. Since G(s) always acts as
a lag network, the system is unstable. With G(s) = 1/s(Is + D),
equation (1) becomes

6(s) _ s(Is + D)
™s)  3s3(1s + D) + K)K,s + KKy

Because of instability, the system operates in a saturation mode (for
‘both saturation elements). Since the two saturstion elements are in
different loops, an analytic solution based on classic control theory
is quite involved. .

The control problem, however, can be simplified to some exéent if
2 nonlinear controller is introduced and synthesized on the open-loop
point of view. To be specific, the system block diagrgm is redrawn as
in Figure 2. The originel input r, which represents either = commeand
or a disturbance, can be 1nterpréted as a set of initial conditions

90, 60, and 30. The first objective is to find an open-loop control

law u, which deperds on initial conditioné only, to steer the system
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to & desired set of termincl conditions ed, 5d’ and 5;: Besed on this
result, a controller Y is synthesized and the system loop is then closed.
If, at the same time, a minimization (or maximization) of a prescribed

V performance index is desired, then the problem becomes on optimal
control problem. To facilitate the mathematical manipulation,

assuning the system is operated in the linear regions, then with the

absence of ¥,

s6(s) KlG(s)

-a(s) Js + KleG(s) * (2)

In the following sections, a discussion on the optimal control problem
with saturations for.various G(s) is presented. Section 2 discusses

the problem where the inertia of the gyro is negligible. it turns

out to be & bounded phase-coordinate control prbblem.' With the

performance index-being minimal‘time, the problem is solved for the

case of unspecified 6. A numerical example is included for illustration.
Section 3 defines the problems that assume different forms of gyro transfer
functions. Each of the problems cean be treated as an optimal control

problem in the bounded phase-coordinate system. Section 4 outlines

the plan of future study of these problems with various performance indices.

2. PRELIMINARY RESULTS

If the inertia of the gyro shown in Figure 2 is negligible, i.e.,
G(s) = 1/Ds, then the over-sll transfer function given in equation (2)

becomes

86(s) K
sws) " —=——— °
us JDs ™ + Kle

For simplicity. consider a normelized transfer function of 1/(s2 + 1).
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An equivalent system can be described by a second order differential

system

x = Ax(t) + b u(t) ' - (3)

x(0) = [48] a-[2 v [

To include the saturation effect, as shown in Figure 2, the constraints

where

ré(t)l < o and |u(t)] < 1 (normelized) are required. Under these
conditions, it is desired to determine a control law u(t) which steers
the systen (3) from an initial state x(0) = [‘D] to the prescribed
terminal state x(T) = [é’d] with a minimal perfonnance index. 1If
éd = 3& = 0 and the performance index is minimel time T, it becomes
& time-optimal regulator problem in the bounded phase-coordinate system.
For |6(t)] <a<l, tﬁe problem is solved by Russell (1] which gives
a "bang-bang" type of control when the'trajectory stays inside the
bound, and a linear control when it stays on the boundar:. The
switching curve and the controllable.region are shown in Figure 3.
"The boundary of the céntrollable region and the switching curve consist
of circular arcs as follows: |
Arc DE : center at (-1, 0), radius 2 + o3
Arc EF : center at (1, 0), radius ¢;
Arc GO: center at (1, 0), readius 1.
Arcs D'E', etc. are their symmetric counterparts. With the switching

curve so defined, the control law is given as
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(—l if (8. 8) ¢ interior of reglon I, or
5
(8, 8) on arc DE or arc E'F' or arc G'O,
[ ] oD
~ut) =ﬁ +1 if (8, ©) ¢ interior of region II, or

(8, 8) on arc EF or arc D'E' or are GO,

@ 1f (8, ©) on chord FG or chord F'G'.
Thus the nonlinear controller ¥ can be constructed by means of storing
the control law in some on-line device.

The controlleble region is determined for the case of minimal time

and é = 3d= 0. Therefore any initial state, which is outside of the

d
controllable region, cannot be brought back to the origin in a finite
time interval under the constraints |6(t)} <&, 0 < a < 1, and

Ju(t)| < 1.

3. OTHER FORMULATIONS OF THE I%RTICUﬁAR VEHICLE CONTROL

3-1 Controclled State Variables Including Displacement

In the above discussion, the displacement 8 was left free. If 0
also has its desired terminal value, the differential system (3) is
augmented to & third order system

. /
x=A& x(t) + b u(t)

where
_ fe(e)l 21 0 _ 2
x(t) = (L), A=10 0 1}, b=-]0},
o(t) 2-1 0 1
and

[6(t)] <&, lu(t)] <1 .
The problem is to find a controller u(t) to bring an initiel state

x(0) = io to the terminel stete x(T) = id with some prescribed

~ minimized ot the same time.

(5

performance index btein



-10-

Although this problem is more general than the simple bounded
phase-coordinate control discussed in the preceding section, the
inertia term of the gyro is ignored. When the time interval of the
operation becomes short, which is exactly the objective of the
time-optimal control system, the inertia term may result in an
undesirable time lag so that it cannot be ignored in synthesizing
the controller. This problem will be formulated next.

3-2 Gyro Transfer Function Including Inertia Term

With G(s) = 1/s(Is + D), the over-all transfer function given in

equation (2) becomes

s68(s) _ !

-u(s) 5153 4 gps? 4 KK, )

For a normelized transfer function of l/(s3 + 332+ 1), the equivalent
differential system can be written as

4= A% + D uw)

where
o(t) 0100 o
° A A
S“‘(t)“s,(t) )A=001 » b= )
6(t) 0 0 0
Lood
6(t) 0-1 0-8 g 2t
and ’

[B(t)] <o Ju(e)| <1,
As before, the controller u(t) is required to drive %(90) = io to
ﬁ(T).= ﬁd with & performence index minimal. This problem and the one
formulated in Section 3-1 will be investigated as outlined in the

following section.



4. PLAN OF FUTURE WORK

The time-optimal regulator problem without the gyroiinertia tem
(section 3-1) will be investigated first. Gamkrelidze's [2] necessary
condition, toéether with Russell's [1] sufficiency condition, will be
applied. It is expected that the switching surface and the controllable
region can be determined in the phese-coordinate space. By storing this
information in some on-line deviéé, 2 closed-loop time-optimal
regulator is feasible.

The next step is to‘study the minimum energy control problem for
the same system. At the present time it is not certain if a switching
surface can be found explicitly. In any event, an explicit time
function for the controller can be determined by the method of maximizing
the projection of the set of att;inability onto the adjoint vector [3].
The storage of the time function makes the sample-and-hold type closed-’
loop optimel control possible.

The controller so determined will then be simulated on a digital
computer and the results evaluated. The same steps of investigation
will be applied to the system which includes the gyro inertia term. A
careful comparison of these results against the existing controller

will determine the merit of this investigation.
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PART C

OPTIMAL CONTROL IN BOUNDED PHASE-COORDINATE PROCESS

1. INTRODUCTION

A method of determining the optimal control in the bounded
phase-coordinate system was developed and presented in the previous
report [3]. An application of the method to the time-optimal control
of an unstable booster uith-actuator position and rate limits was
also given there. In this report, an extremal control of an undamped
oscillatory plant (or, a harmonic oscillator) with actuator position
and rate limits is presented. The same méthod is utilized in this
application, which is based on the "backing out of the térget" procedure.
As a first attempt, the ratio of control anplitude limit to the control
rate 1imit is selected as one-fifth of the period of the oscillation.
This selection allows the extremal control to enter upon and exit from
its bound once every half cycle of oscillation.

In the following sections, the extremal.control for a harmonic
oscillator is presented. The detailed derivation 1s also given;

Section 2 defines the problem end then analyzes it. Section 3 determines
the extremal control by means of the maximization of the projection of
the statg vector onto a unit'adjoint vector for every fixed terminal
time. The procedure follows the general pattern as that used in the
unstable ﬁooster problen, and hence the general theory is omitted in

this report. Section 4 gives an outline for the future work.
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2. ANALYSIS OF OPTIMAL CONTROL OF A HARMONIC OSCILLATOR

A harmonic oscillator is described by a second order differential

systeﬁ
- A
2=Ax+ b u(t) (1)
where
A 1" 51 A 1o 1l A~ o
‘X = ° ,A= ,b= h
x2 x1 -1 O 1

The problem is to determine an admissible control u(t) on [o, tl]

A A
which steers the system (1) from a given initial state x(0) = x, to
A
x(tl) = 0 such that

fu(e)] <1, la(t)] < 2.5/x

on [0, t1] end t, is minimal.
To formulate the »roblem as a bounded phase-coordinate control

problem augment the system by letting x_ = u(t). Furthermore, define

3
T = - t for the purpose of "backing out of the target," then the system
(1) vecomes

dx/ar = - Ax(7) - b v(71) (2)

with x(0) = .0 where

e X 010 0
x = xz';& ,A= |1 0 1], b=
X3 ur) 9 0 O

and
V(T) = du/dT.

By the variation of parameters formula, the solution is

F-T s

f fcos(t-8) - 1] v(s) ds
o
x(t) = IT sin(t-s) v(s) as (3)

o]

-IT v(s) as

o N L
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where. |v(s)| < 2.5/x is admissible on [0,7]. To represent the
extremal v as a multiple of the signﬁm of an adjoint solution for

the bounded phase-coordinate control problem, the adjoint system must
be modified. Consequently, a "total adjoint vector”™ must satisfy the
relation

- ()

A'p(r), 1f |xg(n)l <1,
dp/ar = {
A'p(r), if |x3(1)| =1 ,

where A' = transpose of A

0 1 0
A=]-1 0 O} -~
0.0 0
Thus
v(7) = 2.5 sgn [p(r)* (-b))/=
‘or _
-v(1) = 2.5 sgn [py(T))/=
in which
+1, if p3 >0,
sgn p3 ={ 9, if p3 = 0,
-1, 1f py <0
and p3(7) is allowed certain jumpvdiscontinuities at endpoints of
intervals where ‘x3(1)| =1, and p3(f) = 0 when |x3(T)] =1. As a

result, the solution of the system (&) is

pl(f) = pl(o) cos T + pz(O) sin T
PZ(T) = - Pl(o) sin f + pz(O) cos T

-pl(ﬁ) 205 T -’pz(o) sin T + %, if \x3(T)‘ <1
py(7) =

o) , 1f \x3(¢)1 =1
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vhere the value of constant k in p3(7) depends on pl(o), pz(o) and

the interval in which \x3(—r)\ < 1.

3. THE EXTREMAL CONTROLS -

Let the unit adjoint vector at time 1 be
cos 8 cos &
M= |sin 6 cos |, |6} <x, |7l < x/2 ,
sin g
then the projection of x(T) onto 7 is

B P=cosy IT £(s; t, 6, @) [-v(s)] as
o

where -

f(s; t, 8, ) = cos 8 - cos(t - 6 - s) + ten

Since

. f(S; t, 6, g) ='f(53 t, n+ 9, - g)

it suffices tc consider only half of the range of 8. Choose -n< 8< 0

for convenience. Then for a fixed 7, a fixed 8, and a fixed 7, f(s; t,

8, @) can be sketched on the interval 0 < s < 7.

To determine the form of extremal v(s) that maximizes P, the

method of inspection that was employed in the unstable booster probdlem

can be used. A typical case is shown in Figure 4. The ranges are
-bn/5 < 0 < - 3x/5, 11n/5 < 7 - @ < 14x/5. The form of extremal v(s)
is:

‘(a) for x/2 > Q’z_tan'l [cos(6n/5 + 8) - cos 8] > 0
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2.5/x, if 0 < s < 2(7 - 8)/3 - 22xn/15 = 5,

(s - -2.5/%, if 5, <s < (7 - 6)/3 - 38x/15 = T,
0, if 1, <s<rT - 4x/5 = T,
2.5/n, if 1, <s<T
or
(bv) for tan"t [cos(6n/5 + 8) - cos 8] > &
2_-—tan‘l [cos 6 - cos ((2x - 8)/3)]
2.5/x, if 0 < s < 2(r - 0)/3 - 22x/15 = s,
-2.5/x, 1f s, < s < 4(7 - 6)/3 - 38x/15 = T
-v(s) ={ o, if T,<s<T -0+ cos™t {cos 6 + tan g] - 2x = T,
2.5/x, if T,<s<T-8- cos™t {cos 6 + tan g] = S,
-2.5/x, if s,<s<7T
or

(c) for —tan™t [cos @ - cos((2x - 8)/3))1 >4 > - n/2
2.5/x, if 0 < s < 2(1 - 6)/3 - 22x/15 = sy
-2.5/x, if 5, <8< h(T - 0)/3 - 38x/15 = L

-v(s) ={ 9, 1f'r; <s <7 - b(x + 8)/3 = T,

2.5/%, 1f 7,

-2.5/x, if s,<'s<T,

<s<rt-2(x+8)/3=s,

The same procedure was carried out for all possible ranges of @
and T. It was found that the extremal v(s) reaches zero and leaves zero
as oiften as the length of v permits. Denote the time s at which such

events occur by r,, i =1, 2, ..., 2N, and let T°=0

1’ s Tomr =T -
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Furthermore, let

lu(s)]| <2, 1f Ty $8< Ty, 10,1, o0, N;

and
lu(s)| = 1, 1if Topl S8 < Tospr 4= 05 ooey N1
Then
dp3/ds = d‘?3/ds for T, £ 5< Ty 0,120, oty N;
and
p3(s) = 0 for Topl S 5% o2’ 1=0, ..., N-1;
where ¥, is a component of ¥ satisfying a¥/ar = A'Y. As indicated in

3
the previous report {3], choosing

p3(s) = Y3(s) - Y3(721+1) for Toy <8 < Toss1? i=0, ..., N,
yields p3(s) being zero and continuous at Toi41? and consequently the

Junp conditions must be satisfied at 7 L i=0, .. ; N-1l. Since T is

2
the unit adjoint vector at time r, thus p3('r) = Y3('r) = 7)3 = sin .
Therefore
A cos(t-1 -9)-cos(t-s5-68), if T €s< T
2i+l ’ - 2i+1
P3(55 T, 6, ¢) 21 ?
cos g =1 HE To141 £5< To542

cos g-cos{r-6-s) + tan g+5(tan g,-tan 2),

ir TZNS— s<T,
where
1=0,1, ..., N-1
0, if ]x3('r)] = Ju(7)] <1
Tt Il = lan)] = 1,
and

¢° = direction limit for n at which Ps has a jump discontinuity

( .¢° is & real number ). Thus p3(s; T,_. 6, J) has at most one jump

discontinuity at s = 1 which heppens only when |x3(1')| = 1. The
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explicit form of extremel v(s) can now be expressed as

~v(s) = £2 sgn [p,(s; 7, 0, #)]

205

= —* sgn [P3(53 T, 6, Q)/COS ) .'

Furthermore, the extremel v(s) is also the time-optimal v(s) by
Russell's sufficiency condition [17.
In Figure 4, the function p3 for the typicel case is also

sketched. The fomulas for parameters t,, 1 =1, 2, ..., 2N, 5, and

i
¢° are determined for all possible choices of -n < 8 < 0, \;25‘ < n/2,
and 0 < 7 <o, All the results are tabulated in Charts I and II. To
use these charts, first locate the Case Number from Chart I for the
appropriate ranges of T and 6. Then on Chart II, for every Case

Number and every range of g, a set of parameters of 7,, 1 =1,2, . . .,

i)
2N, 5, end ¢o ere given.

4. PLAN OF FUTURE WORK

An irmediate step is to extend the study of the harmonic oscillator
to the cases where the ratio of control emplitude limit to the control
rete limit assumes various numbers. At the present time, the
investigatioﬁ is almost completed for this ratio ranging from 2n/5'
to 2«/&. Although the range seems small, the complexity of the problem
increases significantly because of the interaction between extremal
control amplitude and extremal céntrol rate.

As outlined in the previous report [3], a study of an underdamped
oscillatory)plant with bounded emplitude and rate control will be

carried out next. Since this represenis a process in which the plant
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has & pair of complex conj-gate roots, the problem is relatively

important in the practical sense. Other major plans are listed in the

previous report and will not be restated here.
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PART D

STOCHASTIC OPTIMAL CONTROL

1. INTRODUCTION

During the coordination meeting at Purdue on March 11, 1966,
the antenna pointing problem was discussed to some extent. It was
agreed that the control problem should be treated as a steady state
problem or its equivalent. The block diagram of the system is shown
in Figure 5 in whiéh.the antenna on a space vehicle is subject to
random disturbances. »

To formulate the problem meaningfully, it is‘neccssary to select
a performance index having a physical significance. Section 2
discusses the motivation of the problem formulation. The performance
index which 1is practical in the engineering sense, yc¢ is mathematically
tractable, is then introduced. With respect to the performance index,
the optimal control problem is thus defined. Section 3 gives a brief
summary of technical progress during the reporting period. Detailed
. discussions are presented in the Appendix. Section 4 outlines the
plan of future work.

2. FORMULATION OF ANTENNA POINTING PROBLEM

In the antenna system, the basic purpose is the transmission of

information. A logical performance index, then, is the expected

information rate. Such a criterion has a close connection to the pointing

accuracy which is measured by the signal strength. Let

information rate,

r

0
"

signal strength,

p = pointing accuracy,
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then

r = £(s) = £(g(p)) = n(p)
Equivalently,

R = H(E)
wvhere R = error rate, and E = pointing error. The function H, then, is
a measure of accuracy, and hence is a2 logical perf&rmance index to be .
minimized in the process of determining an optimal controller.

Typically, H can be sketched as in Figure 6 in which the méasure
of performance is graphically classified into three regions, viz.,
egbod, transitiﬁn, and pocr. These regions are directly connected to
the antenna pointing direction. This is shown in Figure 7 in the (@, #)-
coordinates - where 6 and @ is the coordinate system of the pointing.
direction.
. With the measure of performance so defined, the controller is

assigned to operate in two modes as follows:

Mode 1 - When the pointing angle is inside the good performance
‘region,'the controllef generates a control signal
which minimizes the pfobability of exiting from that
region during some time interval Th;

Mode 2 - When the pointing angle is in the poor performance region,
the céntroller generates a2 control signal which maximizes
the probability of entering the good performance region
during some time interval Ta'

Thus the optimization procedure can be carried out in two separate

pafts:

(1) 1In ecch mode of cperation, determine the control signal thet
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ninimizes (or maximizes) the appropriate probability.

(2) Minimize the function H (representing the error rate) with
respect to tﬁe sizes of transition and good performence regions {the
radii of the béundary circles of these regions), and to Th and Ta'

3. SUMMARY OF TECHNICAL PROGRESS

During the reporting period, effort was directed toward the
determination of the control signal which minimizes (or maximizes) the
relevant probability in each mode of operation. For a linear éystem
with white noise disturbances, the method of determining the control
signal was discussed in the previous progress report [3]. The results
of the extended study of the problem are surmarized in this section
with the detailed derivation given in the Appendix.

The block diagram of the ;ystem under investigation is shown
in Figure 8 in which x is the system state, n is the random disturbance
and u represents control. For the purpose of discussion, assume the
state 1s in a situation such that the control u is in Mode 2 of oﬁeration.

Let Y(tl, X,, t, + Ta) be the probability of entering the good

1’ 1
performance region in the time interval [tl, ty

found &s the solution of a partial differential equation of a bouhdary

+ Ta}, then ¥ can be

value problem. A first order approximafion to ¥ in the (xl, s T) -
space is known {2]. For the purposes of determining the optimel
control u; it only requires determining ¥(0, X s Ta) as an implicit
function of u. An iterative scheme of fiﬁding optimal u by optimizing
¥ is discussed in the Appendix. The method can be applied to systems
with no restrictions on their order, and hence has an advantege over

the scheme given by Mishchenko (2].
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n (random disturbance)
] dx =(Ax + Bu)dt + ¢ dn —
(control signal) ‘ (system state)

FIGURE 8

FIGURE 9
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4. PLAN OF FUTURE WORK

The simulation of the antenna pointing system on a digitalv
computer will be the next goal in the plan. This involves the writing
of a computer problem based on the flow chart discussed in the
Appendix. The convergence problem of the computational scheme will
also be investigated.

The extension of the method to higher order systems will be
examined closely. Attention will be focused on any hidden pitfalls.
Once this is completed, numerical data for a physical space vehicle
will be used as a test model for the computational method. A
comparison of the results so obtained agesinst those from.existing

control systems is also planned.
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APPENDIX

The antenna problem as a "pursuit® problem was discussed to some
extent in the previous progress report [3]. The solution of the
problem for first order systems has been examined in more detail
during this reporting period, and is presented in the following
paragraphs. The extension of this technique to high order systems is
in progress. \

Consider the Syétem which is described by the stochastic

differential equation

dx = A(x, t) dt + u(t) dt + o(x, t) an (1)
x(0) = X
where ‘
X = System state
u = control signal
n = a Brownian motion process

Doob {4] showed that under suitable restrictions on A and o,
2
SN IERER: o%p _
3t * (A, 1)+ aly) 3, Tz Y t) =0 (2)
1 - bxl
where p(tl, X5ty xz) = probability that x(tz) < x, given that

x(tl) = x,. Mishchenko [2] showed that if the statistics of the

x-process are described by (2), then

3 3y 2 2%y
-a—?cl + [aCx), ) + ult))] = 1 6%(xp, ) h o (3)

with boundary conditions (see Figure 9)
?(t), 0, T) = 1 for ell t,, (1)
and

¥(T, x,, T)

>O for x) #9 = (5)
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where Y(tl, X5 T) = probability that [x(7) = 0] for some Te[tl, T].
To maximize ¥(0, X s T) with respect to u, a numerical method
for determining ¥ for & given u 1is given first. The initial step in
the procedure is to guess ¥(0, Xy T). That is, let
%0, %, T) = 4(x,) 0

where go is en initially guessed function. Then compute (BY/atl)]t -0
1=

by using equations (3) and (6). Thus, by the relation

- d
¥ty + at, x, 1) = ¥t x, T) + -a-\{—l(tl, x, T) A, (7)
where

At = T/M, ¥(at,. X5 T)
can also be computed.
Using the same procedure, compute ¥(2At, X, T), etc. The process
is repeated until ¥(MAt, x., T) is obtained, say,
Y(ut, x, T) = gglx) | (8)
If ¢T(x1) = 0 for all x, # 0, then ﬂo(xl) correctly represents
¥(9, x,, T). It is clear, then, that the functional

18, - [ ° )Y e (9)

l)

is minimal for ﬂo(x1)>= (9, xl,.T). Thus the problem becomes the minimiza-
tion of Il(go) with respect to'go(xl). This mininization problem
in its discretized version is presently carried out by a gradient
technique as follows:
Let the function ﬁo(xl) be represented by a vector f_ whose
components are -
gl =p ()

with
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Let the function u(tl) be revpresented by a vector u whose components

are
o= u(tli)
with ‘

1 N
0=t <L <t =T

The solution to the discretized version of the optimization

problem will be carried out in the 2N-dimensional space

{ 1 2 N 1
u, u

sy eees W, BT, e, gON}. A flow chart of the computational

algorithm is shown in Figure 10. 'The procedure begins with choosing

ag for u and goo for ¢o’ as shown in Steps 1 and 2. Step 3 computes

ﬂT and Il(ﬂo) by the equations (3) through (9). Step & tests if ¢6.has been

determined (whether from initial guess or successive iterations) with

sufficient accuracy. If not, its value is improved as follows:

Let.z be a 2N-dimensional uhit vector normal to the‘g = uo

manifold at {uo, gpo}, then the iterated gPl of géo can be computed

from

{uo’ gpl} = gfp’ gpo} - h1 v, VIl>

v (2 3 3 3
— ~‘, ... ., _, _, LN ] .’ ,
aut ad ag t aw ¥

o o

where

h1 = step slze factor,
< , > denotes the inner product .
This computational task is rendered in Step 5.
‘Hhen Step 4 indicates that ﬂo has reached a value with a desired
accuracy, the improvement of u g;éins as follous:
Let W be a 2l-dizensional unit vector normal to VI, at {uo, goo}.

—

Then
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{ % P} = {8 Foot * hp B< B ¥ gy >

where h2 = step size factor. This computational procedure is carried

~out in Step 6, which has the following meaning: {uo, ﬁoo} is being

-—

increnented in the direction which increases gooN but leaves Il

uncltered. If Il is indeed unaltered, then golN = ¥(0, X T). Because

of discretization error, I, will in fact be changed éomewhat. For this

1
reason, Steps 7 and 8 are inserted to test the magnitude of the

discretization errors introduced in Step 6. If Il is not within the
desired accuracy, these errors are corrected by returning to Step 5.

Otherwise, the computation is terminated if a prescribed number of

improvement cycles (which gives a stop condition) is completed.
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